The Crystal and Molecular Structure of Polymeric Tris(O-isopropylxanthato)bismuth(III)

BERNARD F. HOSKINS*, EDWARD R. T. TIEKINK and GEORGE WINTER

Department of Inorganic Chemistry, University of Melbourne, Parkville, Victoria, Australia 3052

Received August 25, 1983

In the course of a study concerning the asymmetry of sulphur co-ordination in xanthates of group V elements, we have isolated $Bi({}^{i}Prxan)_{3}$ and determined its structure which shows noteworthy features. The complex was prepared by stirring $BiCl_{3}$ in an ethanol solution of $KS_{2}CO-i-C_{3}H_{7}$. Pale yellow crystals of $Bi({}^{i}Prxan)_{3}$ were obtained from a benzene/light petroleum solution.

Crystal Data Bi(S₂CO-i-C₃H₇)₃, C₁₂H₂₁O₃S₆Bi, M = 614.7, orthorhombic, space group Pnma (D_{2h}¹⁶, No. 62), a = 9.428(2), b = 11.003(3), c = 20.833(4)Å, U = 2161 Å⁻³ $D_{meas} = 1.86$ (aq. ZnBr₂ soln.), Z = 4, $D_{calc} = 1.89$ Mg m⁻³, F(000) = 1184, μ (MoK α) = 16.18 mm⁻¹.

Preliminary photographic work indicated the crystal to be orthorhombic, intensity data were collected at room temperature on an Enraf-Nonius CAD-4 four-circle diffractometer up to a Bragg angle of

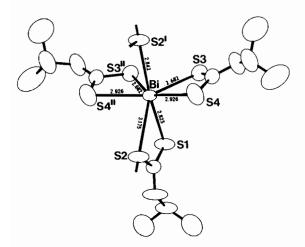


Fig. 1. Immediate environment of the Bi atom in the polymeric Bi(1 Prxan)₃ showing Bi-S bond distances (Å), which demonstrates the gross asymmetry in the co-ordination of the xanthate moieties; relevant angles are given in Table I.

TABLE I. Selected Bond Angles (°) for Bi(ⁱPrxan)₃. Estimated standard deviations in parentheses.

Atoms	Angle	Atoms	Angle
S(1)-Bi-S(2)	58.89(8)	S(3)-Bi-S(4)	63.66(7)
S(1) - Bi - S(3)	87.07(7)	$S(3) - Bi - S(2^{1})$	84.67(6)
S(1)-Bi-S(4)	100.76(6)	$S(3)-Bi-S(3^{11})$	83.82(6)
$S(1)-Bi-S(2^{l})^{a}$	168.80(8)	$S(3) - Bi - S(4^{11})$	145.81(8)
S(2)-Bi-S(3)	127.53(4)	$S(4)-Bi-S(2^{I})$	82.19(7)
S(2)-Bi-S(4)	83.47(7)	$S(4) - Bi - S(4^{11})$	144.09(8)
$S(2)-Bi-S(2^{I})$	132.23(8)		

^aI refers to the symmetry operation $\frac{1}{2}$ + x, $\frac{1}{2}$ - y, $\frac{1}{2}$ - z; and II refers to x, $\frac{1}{2}$ - y, z.

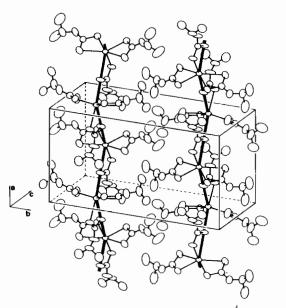


Fig. 2. Unit cell contents of the polymeric Bi(¹Prxan)₃; the --Bi-S-Bi interactions (highlighted) are reinforcing the OR

Bi-S-C-S-Bi bridges.

27.5° using MoK α (graphite monochromator) radiation employing the $\omega:2\theta$ scan technique. The $I \ge 2\sigma(I)$ criteria was used yielding 1796 unique reflections. No significant decomposition of the crystal occurred during the data collection. Successful refinement was achieved in the centrosymmetric space group *Pnma*. The position of the Bi atom was determined from the Patterson synthesis and the structure was refined using a full-matrix least squares method in which the function $\Sigma w \Delta^2$ was minimized [1]. Refinement was performed on all positional parameters, isotropic and then anisotropic thermal

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

parameters. Hydrogen atoms were included in the model in their calculated positions and a weighting scheme was applied. At convergence, conventional values of R and R_w were 0.042 and 0.039.

An ORTEP diagram of the immediate environment of the Bi atom is shown in Fig. 1 (Table I). The Bi atom is bonded to three bidentate xanthate ligands, two of which are related by a crystallographic mirror plane. Of particular interest is the co-ordination of the third xanthate ligand which displays gross asymmetry due to an additional interaction with a neighbouring Bi atom which leads to a linear polymeric structure. In fact this xanthate moiety may be considered as functioning both as a xanthate bridge and as a chelating ligand since the Bi-S(2) distance of 3.175(2) Å is well within the sum of the estimated van der Waal's radii of 3.8 Å [2], this also has the consequence that the bridging sulphur atom is three co-ordinate. A representation of the unit cell is shown in Fig. 2, where the -Bi-S-Bi- interactions have been highlighted These interactions appear to reinforce the xanthate bridges in the formation of the polymeric structure.

References

- 1 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge (1976).
- 2 A. Bondi, J. Phys. Chem., 68, 441 (1964). The van der Waal's radius for Pb was used.